Prediction of Stock Exchange Share Price using ANN and PSO
نویسندگان
چکیده
Stock Exchange Share Price is very hard to predict since there are no significant rules to estimate or predict that. Stock price prediction is one of the emerging field of research and many methods like technical analysis, statistical analysis, time series analysis etc are used for this purpose. Artificial Neural Network is a popular technique for the stock price prediction. Here we use Multilayer Feedforward network as a network model for predicting stock price and to train this network model we are going to use Particle Swarm Optimization.
منابع مشابه
Stock price prediction using the Chaid rule-based algorithm and particle swarm optimization (pso)
Stock prices in each industry are one of the major issues in the stock market. Given the increasing number of shareholders in the stock market and their attention to the price of different stocks in transactions, the prediction of the stock price trend has become significant. Many people use the share price movement process when com-paring different stocks while investing, and also want to pred...
متن کاملPrediction of Stock Price using Particle Swarm Optimization Algorithm and Box-Jenkins Time Series
The purpose of this research is predicting the stock prices using the Particle Swarm Optimization Algorithm and Box-Jenkins method. In this way, the information of 165 corporations is collected from 2001 to 2016. Then, this research considers price to earnings per share and earnings per share as main variables. The relevant regression equation was created using two variables of earnings per sha...
متن کاملShort-term Prediction of Tehran Stock Exchange Price Index (TEPIX): Using Artificial Neural Network (ANN)
The main objective of this study is to find out whether an Artificial Neural Network (ANN) will be useful to predict stock market price, which is highly non-linear and uncertain. Specifically, this study will focus on forecasting TSE Price Index (TEPIX) as the most significant index of Iran Stock Market. Many data have been used as inputs to the network. These data are observations of 2000 day...
متن کاملStudying the Dividend Policy and Share Price Volatility: Iran Evidence
Explaining dividend policy has been one of the most difficult challenges facing financial economists. Despite decades of study, we have yet to completely understand the factors that influence dividend policy and the manner in which these factors interact.The aim of this paper is to examine the relation between dividend policy and share price volatility in Tehran Stock Exchange (TSE). The analys...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کامل